shutterstock_92951170.jpg
This text isn't yet available in your language!
Please choose among the following languages:
German, Russian

Ultrahochvakuum


In der angewandten Physik bedient man sich mehrerer Pumpentypen um ein Ultrahochvakuum zu erzeugen. Zunächst wird mit mechanisch wirkenden Pumpen (z. B. Drehschieberpumpe, Membranpumpe) ein Vordruck im Rezipienten im Bereich von 100 bis 10-2 Millibar erzeugt. Abhängig von der Größe des Rezipienten und der Pumpleistung der Pumpen dauert dies im Normalfall einige Minuten. Als nächstes erzeugen Turbomolekularpumpen in einem bis zu mehreren Stunden dauernden Prozess ein Hochvakuum mit einem Basisdruck von ungefähr 10-7 Millibar. Dieser Druck lässt sich nicht mehr ohne weitere Hilfsmittel verringern, da die ständige Desorption von adsorbiertem Wasser und anderen Verbindungen, wie zum Beispiel Kohlenwasserstoffen, mit niedrigem Dampfdruck, auch bei unendlicher lang andauernder Pumpleistung dies verhindert.

Die Desorptionsprozesse werden beschleunigt, wenn die Kammer durch direkte Heizung der Kammerwände und indirekte thermische Erwärmung der inneren Oberflächen auf eine Temperatur gebracht wird, die mindestens über dem Siedepunkt von Wasser, möglichst aber deutlich höher liegt. Wichtigstes Kriterium der Temperaturhöhe ist die Temperaturbeständigkeit der eingebauten Komponenten, wie zum Beispiel Durchführungen für elektrische Verbindungen sowie für Sichtfenster. Übliche Ausheiztemperaturen liegen zwischen 130 °C und über 200 °C.

Das in hohem Maße desorbierende Wasser wird während des Ausheizens mittels der Turbomolekularpumpen größtenteils abgepumpt, ebenso wie eventuelle Kohlenstoff-Kontaminationen. Dieser Prozess dauert minimal 24 Stunden, bei Kammern mit vergleichsweise komplex angeordneten inneren Oberflächen durch angebaute Apparaturen wird üblicherweise nach zwei bis drei Tagen die Heizung heruntergefahren.

Zum Erreichen des Ultrahochvakuums werden nicht-mechanische Pumpen zum Einsatz gebracht. Eine Ionengetterpumpe pumpt durch Ionisation und Einfangen der Restgasmoleküle in Titanröhrchen in einem Druckbereich von 10-7 Millibar bis 10-10 Millibar. Hier zeigt sich, dass die Pumpleistung nur dann ausreichend ist, wenn das Ausheizen vorher den Restgasdruck ausreichend vermindert hat. Eine Titansublimationspumpe arbeitet über thermisch in die Kammer verteiltem Titandampf, der sich durch eine hohe chemische Reaktivität auszeichnet und Restgasatome an sich und der (kalten) Kammerwand bindet, so dass sich folglich der Restgasdruck weiter vermindert. Der mit diesem oben beschriebenen Verfahren minimal erreichbare Restgasdruck liegt im Bereich von 10-11 Millibar.

Durch Kühlfallen am unterem Teil der Kammer kann nun ebenfalls ein statistisch signifikanter Teil des Restgases temporär gebunden werden und der Kammerdruck auf ungefähr 10-12 Millibar kurzfristig bei optimaler Funktion aller beteiligten Komponenten gesenkt werden.


Dieser Artikel basiert auf einem Artikel aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation (pdf). In der Wikipedia ist eine Liste der Autoren verfügbar.
Logo Austria